The genome sequence of segmental allotetraploid peanut Arachis hypogaea

David J. Bertioli ${ }^{1,2,3,30 \star}$, Jerry Jenkins ${ }^{\text {© }}$ 4,30 , Josh Clevenger ${ }^{1,2,3,30}$, Olga Dudchenko ${ }^{5}{ }^{5}$, Dongying Gao ${ }^{1,}$ Guillermo Seijo ${ }^{6,7}$, Soraya C. M. Leal-Bertioli¹,2,8, Longhui Ren ${ }^{9}$, Andrew D. Farmer ${ }^{10}$, Manish K. Pandey ${ }^{(1)}{ }^{11}$, Sergio S. Samoluk ${ }^{6,7}$, Brian Abernathy ${ }^{1}$, Gaurav Agarwal ${ }^{8}$, Carolina Ballén-Taborda ${ }^{2}$, Connor Cameron ${ }^{10}$, Jacqueline Campbell (1) ${ }^{12}$, Carolina Chavarro ${ }^{1,2}$, Annapurna Chitikineni ${ }^{11}$, Ye Chu ${ }^{13}$, Sudhansu Dash ${ }^{10}$, Moaine El Baidouri ${ }^{14,15}$, Baozhu Guo ${ }^{16}$, Wei Huang ${ }^{12}$, Kyung Do Kim ${ }^{1,17}$, Walid Korani ${ }^{10}{ }^{1}$, Sophie Lanciano ${ }^{15,18,19}$, Christopher G. Lui ${ }^{5}$, Marie Mirouze ${ }^{(1)}{ }^{15,18,19}$, Márcio C. Moretzsohn ${ }^{20}$, Melanie Pham ${ }^{5}$, Jin Hee Shin ${ }^{1,17}$, Kenta Shirasawa ${ }^{\left({ }^{21}\right)}$, Senjuti Sinharoy ${ }^{22}$, Avinash Sreedasyam ${ }^{(1)}{ }^{4}$, Nathan T. Weeks ${ }^{(0)}{ }^{23}$, Xinyou Zhang ${ }^{24,25}$, Zheng Zheng ${ }^{24,25}$, Ziqi Sun ${ }^{24,25, ~ L u t z ~ F r o e n i c k e ~}{ }^{26}$, Erez L. Aiden ${ }^{5}$, Richard Michelmore ${ }^{26}$, Rajeev K. Varshney ${ }^{(11}$, C. Corley Holbrook ${ }^{27}$, Ethalinda K. S. Cannon ${ }^{(1)}{ }^{12}$, Brian E. Scheffler ${ }^{(18)}$, Jane Grimwood ${ }^{4}$, Peggy Ozias-Akins ${ }^{2,13}$, Steven B. Cannon © ${ }^{23,31}$, Scott A. Jackson ${ }^{\text {(1) }}$ 1,2,31* and Jeremy Schmutz ${ }^{\text {© }}$ 4,29,31丸

[^0]
Supplementary Note 1

For: The genome sequence of segmental allotetraploid peanut Arachis hypogaea

Evidence of the use and movement of wild Arachis species by ancient inhabitants of South America

Abstract

All Arachis species produce soft nutritious seeds, an attractive food that have long been used by humans. Archaeological remains and remnant populations of Arachis species far from their natural distributions testify to the human use and cultivation of Arachis species since prehistoric times. In this Supplemental Note we present the most compelling evidence with which we are familiar. In the annotated map (Supplementary Note Fig. 1-1; see below), inferred places of origin and movement are indicated by stars and dashed-line arrows respectively. Solid circles and distributions outlined by dashed lines indicate anthropogenic populations. Dotted circles indicate archeological remains of Arachis fruits.

It is important to emphasize that the topography of the regions that separate the areas of origin and derived locations present great difficulties for natural dispersion of Arachis seeds. This is because of the unusual reproductive biology of the genus; whilst the flowers develop above ground, a special 'peg' structure pushes the young pod underground, where development is completed (Smith 1950). This limits the usual dispersion of seeds to within an area of roughly 1 m in diameter covered by the mother plant. Therefore, populations are quite static over long periods of time: over a thousand years, they can usually move only about 1 km . Rarely, water-driven soil erosion will disperse seeds downhill. This pattern of dispersal has led to the distribution of species being heavily influenced by hydrographic basins (Krapovickas and Gregory 2007).

Red: Fragments of a peanut hull (morphologically compatible with fruits of wild species) radiocarbon dated to $\sim 8,500$ years before present were recovered from a buried house in the Ñanchoc valley, pacific coast of Peru (Dillehay et al. 2007). The sites at which they were recovered are far removed from the known range of wild Arachis. The closest wild populations (A. williamsii Krapov. \& W.C. Gregory, A. trinitensis Krapov. \& W.C. Gregory) are known from the Mamoré River in Bolivia, on the other side of the Andean Cordillera whose passes are above 4500 m in elevation, 1500 km distant from the Pacific coast (Krapovickas and Gregory 2007). Since the Valley is not a domestication center, the
adoption of peanut and other crops suggests that these plants must have been cultivated elsewhere earlier than this date, after which groups of local traders, mobile horticulturalists or others brought them into the valley. With the Andean barrier, the transportation by humans is very evident in this case.

White: Arachis villosulicarpa Hoehne is characterized by its large (10-18mm) S-shaped seed and pegs much stronger than can be found in wild species. It is only known as cultivated by indigenous groups of west-central Mato Grosso, like the Nambiquara people. With the exception of this species, none of the other species of the botanical section Extranervosae has ever been collected west of the Paraguay River, which from its source, constitutes the western limit for the section. The closest related wild species is A. pietrarelli Krapov. \& W.C. Gregory that lives in a small region to the SE of the localities in which A. villosulicarpa were found. In all the populations collected, the natives spoken to had no knowledge of this species in the wild state, each tribe maintaining their own seed (Krapovickas and Gregory 2007). All evidence supports this species as an independent domestication of a diploid Arachis species.

Orange: Arachis stenosperma Krapov. \& W.C. Gregory is characterized by the long, narrow, cylindrical fruit and seeds. It occurs in the southeast part of the state of Mato Grosso, within the area where other species of the botanical section Arachis naturally occur. It also grows on the Atlantic coast far from any other species of the section, where it is found in soils of almost pure sand, from Rio de Janeiro to Paranaguá in the state of Paraná (Brazil). This disjunct range was interpreted as an obvious case of cultivation and transportation by humans from the Mato Grosso region to the Atlantic coast of Brazil. It is interesting to note that on the Atlantic coast it was always found in ruderal habitats, while in Mato Grosso, some populations grew in a relatively undisturbed environment. It was hypothesized that seed transportation may have occurred through a pre-Hispanic road called "Peabirá", that connected the Paraná River with the Atlantic coast (JFM Valls pers. commun. in Krapovickas and Gregory 2007).

Yellow. Arachis ipaënsis Krapov. \& W.C. Gregory, the B genome donor of peanut (Bertioli et al. 2016), is known from only one population located at $\sim 600 \mathrm{~km}$ distant from any other species of the B genome (Krapovickas and Gregory 2007). No ancient nor present river exists to explain the movement of this species in a NE-NW direction by hydrochory. Niche modelling of the B species could not explain the location of A. ipaënsis by natural dispersion at the site in which it was collected (Seijo et al. unpublished). Archeological peanut shells which closely resemble those of A. magna Krapov., W.C. Gregory and C.E. Simpson, A. ipaënsis, and/or A. monticola Krapov. and Rigoni were excavated in the Casma and Bermejo Valleys, Peru, from a layer where there was no indication of the presence of corn. These shells were dated at 1800 to 1500 B.C. (Simpson et al. 2001). These findings strongly indicate movement and use of the B genome wild species by humans.

Black: In a dig near Casma Valley, shells were found that closely resemble A. duranensis Krapov. and W.C. Gregory dated at about 1800 to 1500 B.C. (D.J. Banks, pers. commun. in Simpson et al. 2001). Movement of A. duranensis seeds by humans were also proposed to account for the geographical distributions of polymorphisms in chloroplast (Grabiele et al. 2012) and genomic DNA (this work) for this species.

Pink: Arachis monticola Krapov. and Rigoni has been found at only three different sites in two unconnected valleys on the sources of the Bermejo (Río Grande de Jujuy) and Salado (Rio Juramento) Rivers in NW Argentina. This wild form of peanut was only found in places that were occupied and cultivated by ancient natives at altitudes higher than either of the diploid progenitor species occur.

Supplementary Note Fig. 1-1. Annotated map of evidence of cultivation of Arachis in prehistory, inferred places of origin and movement are indicated by stars and dashed-line arrows respectively. Solid circles and distributions outlined by dashed lines indicate anthropogenic populations. Dotted circles indicate archeological remains of Arachis fruits. Please refer to main text for color keys and explanations. The figure was generated using Natural Earth.

References

Bertioli, D.J. et al The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics, 47, 438. (2015).

Dillehay, T.D., Rossen, J., Andres, T.C. and Williams, D.E., Preceramic adoption of peanut, squash, and cotton in northern Peru. Science, 316, 1890-1893 (2007).

Grabiele, M., Chalup, L., Robledo, G. \& Seijo, G. Genetic and geographic origin of domesticated peanut as evidenced by 5S rDNA and chloroplast DNA sequences. Plant Syst. Evol. 298, 1151-1165 (2012).

Krapovickas, A. \& Gregory, W.C. Taxonomy of the genus Arachis (Leguminosae). Bonplandia 16 (Supl.), 1-205 (2007) [transl.].

Simpson, C.E., Krapovickas, A. \& Valls, J.F.M. History of Arachis including evidence of A. hypogaea L. progenitors. Peanut Sci. 28, 78-80 (2001).

Smith, B. Arachis hypogaea, aerial flower and subterranean fruit. Am. J. Bot. 37, 802-850 (1950).

Supplementary Note 2

For: The genome sequence of segmental allotetraploid peanut Arachis hypogaea

Repetitive DNA

Identifying repetitive DNA in the Tifrunner genome. Mobile elements were identified using a number of homology and de novo structural pattern finding algorithms and manual curation.

LTR retrotransposons were identified in the assembled genome sequence. Both LTR_FINDER (Xu and Wang 2007) and LTRharvest (Ellinghaus et al. 2008) were used with default parameters except with minimum LTR length and minimum distance between LTRs of 50 bp and minimum LTR size of 50 bp with LTR_Finder for identifying small LTR retrotransposons. Sequences were extracted and grouped using BLASTN (Altschul et al. 1990) and Perl scripts. Retrotransposon sequences were manually classified and annotated with the aid of the output from LTR_FINDER and hmmsearch (Eddy 2011). False positive annotations including tandem repeats, fragmental elements and other sequences were discarded.

Long interspersed nuclear elements (LINEs) were identified using tblastn homology searches with reference LINE reverse transcriptase domains as queries (Wicker et al. 2007). All significant hits (E -value $<10^{-6}$) and the flanking sequences (5 kb for each side) were extracted and inspected. Complete LINEs were determined by the terminal motifs including poly-A (L1 group) and short repeat (RTE group) and target site duplication (TSD). To identify potential short interspersed nuclear elements (SINEs), regions flanking polyA sequences were extracted using a custom Perl script. Candidates were also identified by the SINE-Finder software (Wenke et al. 2011) Sequences were manually inspected for poly-A tails and TSDs to identify bona fide elements. Elements were grouped using BLASTN, and representatives selected.

DNA transposons were detected by using the conserved domains of different DNA transposon superfamilies as queries in tblastn homology searches. Similarities with e-value $<10^{-6}$ and their 20 Kb flanking sequences (10 Kb each side) were extracted and aligned to define the boundaries. Additionally, MITE-Hunter (Han and Wessler 2010) was used to identify the small DNA transposons that encode no DNA transposases. Endogenous plant pararetroviruses (EPRVs) were identified using homology searches and exemplars extracted for characterization using Perl scripts. Identified transposons were compared with our previous
transposon sequences in the diploid wild species (Bertioli et al. 2016). The names of homologous transposons were used except adding 'Ah' before the names.

To determine the transposon distributions, all transposons were combined together and used as a library to screen the genome using RepeatMasker (http://www.repeatmasker.org/) with default parameters except with -nolow and -norna to not mask low-complexity sequences and rDNA, respectively. The output files were summarized using a custom Perl script, and regions masked by more than one sequence in the repeat library were recognized and counted only once. Base-pair counts excluded gaps.

Identifying active transposable elements though their Circular DNAs. Transposable elements generate extrachromosomal circular DNAs when active (Lanciano et al. 2017). Extrachromosomal circular DNAs were isolated from genomic DNA using the PlasmidSafe DNase (Epicentre, USA) according to the manufacturer's instructions except that the $37^{\circ} \mathrm{C}$ incubation was performed for 17 h . Circular DNAs were then amplified by random rolling circle amplification using the Illustra TempliPhi kit (GE Healthcare, USA) according to the manufacturer's instructions except that the incubation was performed for 65 h at $28^{\circ} \mathrm{C}$. Amplified DNA was used to prepare libraries and sequenced using the MiSeq platform (Illumina, USA) using 250 bp paired-end sequencing.

After quality filtering, to remove any read originating from organelle circular genomes, sequence data was mapped against the mitochondria and chloroplast genomes using Bowtie2 version 2.2.2 71 with sensitive local mapping. Unmapped reads were then mapped against the appropriate reference genomes using parameters: -sensitive local, -k 1. Finally, the bam alignment files were normalized and visualized with the Integrative Genomics Viewer (IGV) software (Broad Institute, https://www.broadinstitute.org/igv/). Sequence reads were also assembled de novo using the A5-miseq pipeline (Coil et al. 2014). For each library, fasta and bam files were obtained and the idxstats module of SAMtools was used to determine the read number corresponding to each assembled scaffold. The coverage data was normalized by the total number of reads used for the de novo assembly. Filtered scaffolds were annotated using a BLAST analysis ($-\mathrm{p}-\mathrm{m} 8$) against organelle genomes and the databases of repetitive DNAs allowing for one hit per scaffold (-b 1 -v 1 options) and for an e-value $<10^{-2}$.

References

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. \& Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403-410 (1990).

Bertioli, D.J. et al The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics, 48, 438. (2016).

Coil, D., Jospin, G. \& Darling, A.E. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 31, 587-589. (2014).

Eddy, S.R. Accelerated Profile HMM Searches. PLoS Computation Biology 7, e1002195 (2011).

Ellinghaus, D., et al. LTRharvest, an efficient and flexible software for de novo detection LTR retrotransposons. BMC Bioinformatics 9,18 (2008).

Han, Y. \& Wessler, S.R. MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res. 38, e199 (2010).

Lanciano, S. et al. Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants. PLoS Genet. 13, 1-20 (2017).

Wenke, T. et al. Targeted identification of short interspersed nuclear element families shows their widespread existence and extreme heterogeneity in plant genomes. Plant Cell 23, 3117-2128 (2011).

Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973-982 (2007).

Supplementary Note 3

For: The genome sequence of segmental allotetraploid peanut Arachis hypogaea

Statistical analysis.

The comparison of expression of homeologous gene pairs was done using the DESeq2 (Love et al. 2014)) package in R based on the negative binomial distribution. Only genes with $\log _{2}$ fold change $>=1$, Benjamini-Hochberg adjusted $P<0.05$ were retained. The comparison of highly expressed homeologous gene pairs between subgenomes in different tissues was carried out using binomial test with the odds of a subgenome being more highly expressed at 0.5 probability, $P<0.05$ were considered significant. Gene Ontology (GO) enrichment analysis was carried out using topGO (Alexa et al. 2006 ; Alexa et al 2016) an R Bioconductor package with Fisher's exact test; only GO terms with a $P<0.05$ (FDR < 0.05) were considered significant. Exact P values are listed in Dataset 2 (hosted at https://doi.org/10.25739/hb5x-wx74, Cyverse and Peanutbase). The statistical analysis of genome methylation was carried out using the Wilcoxon rank-sum test, P values are listed on Supplementary Fig. 18.

References

Love, M.I., Huber, W. \& Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014).

Alexa, A., Rahnenführer, J., Lengauer, T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600-7 (2006).

Alexa, A., \& Rahnenfuhrer, J. topGO: Enrichment Analysis for Gene Ontology. R Package version 2, 2240. (2016)

Supplementary Tables for

The genome sequence of segmental allotetraploid peanut Arachis hypogaea

Supplementary Table 1
 Summary assembly statistics for chromosome scale assembly

Scaffold total	384
Contig total	4,037
Scaffold length total	$2,556.3 \mathrm{Mb}$
Chromosome Sequence	$2,534.1 \mathrm{Mb}$
Contig sequence total	$2,552.5 \mathrm{Mb}(0.1 \%$ gap $)$
Scaffold N/L50	$9 / 134.9 \mathrm{Mb}$
Contig N/L50	$461 / 1.5 \mathrm{Mb}$

Supplementary Table 2
 Chromosomal pseudomolecule and scaffold metrics for genome assembly

Scaffold name	No. Contigs	Size (bp)	\%GC
Arahy. 15	150	160,879,708	36.59\%
Arahy. 19	233	158,625,764	36.59\%
Arahy. 16	222	154,808,347	36.61\%
Arahy. 11	163	149,299,306	36.90\%
Arahy. 13	174	146,725,006	36.24\%
Arahy. 20	183	143,980,330	36.75\%
Arahy. 03	180	143,813,506	35.94\%
Arahy. 14	152	143,237,272	36.49\%
Arahy. 18	206	135,150,084	36.65\%
Arahy. 17	163	134,922,436	36.72\%
Arahy. 04	238	128,801,742	36.54\%
Arahy. 12	136	120,579,088	36.10\%
Arahy. 09	130	120,519,698	36.32\%
Arahy. 10	236	117,088,237	36.15\%
Arahy. 05	173	115,930,344	36.06\%
Arahy. 06	213	115,504,342	36.48\%
Arahy. 01	157	112,420,854	35.90\%
Arahy. 02	195	102,981,163	35.91\%
Arahy. 07	113	81,119,488	35.79\%
Arahy. 08	45	51,897,010	33.47\%
21	35	1,982,220	24.95\%
22	24	1,569,740	44.68\%
23	35	1,519,527	38.42\%
25	23	983,129	31.34\%
26	17	868,297	24.55\%
27	19	745,707	41.34\%
28	3	672,389	41.71\%
29	13	553,903	30.76\%
30	13	419,763	38.68\%
31	3	322,620	27.05\%
32	10	267,858	51.22\%
33	5	202,291	31.99\%
34	6	195,354	35.09\%
35	1	181,829	32.24\%
36	1	169,023	36.91\%
37	1	168,196	39.82\%
38	4	160,818	22.76\%
39	4	160,336	45.81\%
40	2	160,171	26.80\%
42	3	128,001	28.68\%
43	1	107,484	33.73\%
44	3	102,637	40.57\%

Supplementary Table 3 The summary of repeat annotation

Transposable element	Copy number ($\times 10^{3}$)	Coverage (bp)	Content (\%)
Class I	1,827.41	1,644,831,268	64.43
LTR retrotransposon	1,694.04	1,578,596,840	61.83
Ty1/copia	159.55	120,565,582	4.72
Ty3/gypsy	707.58	942,750,004	36.93
TRIM	16.42	5,225,833	0.20
other	810.48	595,215,524	23.32
Non-LTR retrotransposon	133.37	72,064,474	2.82
LINEs	116.53	69,834,293	2.74
SINEs	16.84	2,256,947	0.09
Class II	592.33	282,447,447	11.06
CACTA	220.61	141,956,302	5.56
Harbinger/PIF	2.63	1,703,651	0.07
hAT	67.24	25,712,050	1.01
Helitron	65.50	22,345,038	0.88
mutator	236.34	92,387,871	3.62
Pararetrovirus	2.02	6,575,859	0.26
Tandem repeats		36,911,444	1.45
Total TE coverage	2,421.75	1,890,047,658	74.03

Note: Overlapping regions were counted only once for the Total TE coverage. Total TE coverage excludes tandem repeats.

Supplementary Table 4

Summary of repeat annotation for each Chromosome

	RNA transposon			DNA transposon			Total transposon		
Chromosome	Copy number (X103)	Coverage (bp)	Content (\%)	Copy number (X103)	Coverage (bp)	Content (\%)	Copy number (X10 ${ }^{3}$)	Coverage (bp)	Content (\%)
Arahy. 01	79.07	70,434,548	62.74	26.2	13,076,060	11.64	105.47	83,510,608	74.39
Arahy. 02	70.21	63,373,940	61.68	26.65	12,370,699	12.04	95.86	75,744,639	73.72
Arahy. 03	99.73	87,591,932	61.00	34.84	16,914,242	11.78	134.57	104,506,174	72.78
Arahy. 04	91.19	85,380,662	66.42	29.51	14,862,594	11.56	120.70	100,243,256	77.98
Arahy. 05	79.25	70,836,832	61.19	29.14	13,593,359	11.74	108.39	84,430,191	72.94
Arahy. 06	79.41	73,565,858	63.81	27.29	13,377,300	11.60	106.71	86,943,158	75.42
Arahy. 07	56.853	48,981,019	60.46	21.00	9,881,427	12.20	77.85	58,862,446	72.66
Arahy. 08	29.57	19,463,094	37.54	18.87	6,334,441	12.22	48.43	25,797,535	49.76
Arahy. 09	86.36	77,996,439	64.79	28.09	14,209,957	11.80	114.45	92,206,396	76.59
Arahy. 10	80.97	75,960,376	65.00	26.57	13,353,587	11.43	107.54	89,313,963	76.43
Arahy.1-10	752.60	673,584,700	61.89	267.35	127,973,666	11.76	1,019.95	801,558,366	73.65
Arahy. 11	113.00	104,453,996	70.04	31.68	15,799,513	10.59	144.68	120,253,509	80.63
Arahy. 12	86.91	77,157,318	64.06	29.19	13,380,777	11.11	116.11	90,538,095	75.17
Arahy. 13	101.63	89,753,035	61.25	36.01	15,854,493	10.82	137.64	105,607,528	72.07
Arahy. 14	106.32	96,636,566	67.54	32.66	15,690,775	10.97	138.97	112,327,341	78.50
Arahy. 15	121.82	109,950,628	68.42	34.31	15,967,351	9.94	156.13	125,917,979	78.36
Arahy. 16	113.14	103,230,754	66.79	35.37	16,864,452	10.91	148.51	120,095,206	77.70
Arahy. 17	99.71	91,015,261	67.54	28.88	13,419,852	9.96	128.60	104,435,113	77.50
Arahy. 18	99.34	90,469,021	67.05	29.57	14,066,832	10.43	128.91	104,535,853	77.48
Arahy. 19	118.32	108,210,961	68.32	34.47	17,528,860	11.07	152.80	125,739,821	79.39
Arahy. 20	107.56	99,325,152	69.07	31.50	15,213,929	10.58	139.06	114,539,081	79.65
Arahy.11-20	1,067.75	970,202,692	67.08	323.65	153,786,834	10.63	1,391.40	1,123,989,526	77.71

Supplementary Table 5
 Summary of genome methylation

	Number of methylated Cytosines	Number of unmethylated Cytosines	Percentage methylated
A-subgenome	42027680	13269654	
CG	40507958	25135604	76.00
CHG	23827157	439972180	61.71
CHH			5.14
B-subgenome	57173235	13855996	80.49
CG	53749002	28764160	65.14
CHG	31790492	544836904	5.51
CHH			
Both subgenomes	99200915	27125650	78.53
CG	94256960	53899764	63.62
CHG	55617649	984809084	5.35

Supplementary Table 6. Single nucleotide polymorphisms assignable to ancestral A/B genomes in Tifrunner chromosomes

Whole Chromosomes - assignable single nucleotide polymorphisms (SNPs)

	A SNPs	B SNPs	Proportion B		A SNPs	B SNPs	Proportion A
Arahy. 01	572,704	13,090	0.0223	Arahy. 11	4,664	660,427	0.0070
Arahy. 02	455,861	13,819	0.0294	Arahy. 12	15,711	526,486	0.0290
Arahy. 03	696,004	33,160	0.0455	Arahy. 13	6,926	732,512	0.0094
Arahy. 04	546,306	30,670	0.0532	Arahy. 14	3,192	666,930	0.0048
Arahy. 05	561,488	17,020	0.0294	Arahy. 15	40,182	672,022	0.0564
Arahy. 06	546,081	19,016	0.0337	Arahy. 16	19,975	618,253	0.0313
Arahy. 07	439,632	12,546	0.0277	Arahy. 17	4,219	597,357	0.0070
Arahy. 08	393,684	10,424	0.0258	Arahy. 18	7,449	578,008	0.0127
Arahy. 09	581,794	19,326	0.0321	Arahy. 19	4,260	713,842	0.0059
Arahy. 10	561,733	15,037	0.0261	Arahy. 20	3,289	681,023	0.0048
A sub-gen. sum	5,355,287	184,108	0.0332	B subgen. sum	109,867	6,446,860	0.0168

Supplementary Table 7
 Assignable single nucleotide polymorphisms in chromosome segments derived from ancestral homeologs

Supplementary Table 8

Estimated DNA identities by chromosome of different A. duranensis accessions to the A subgenome of A. hypogaea cv . Tifrunner* (using averages of Illumina whole genome sequences)

Accession	Voucher	Location	Arahy. 01	Arahy. 02	Arahy. 03	Arahy. 04	Arahy. 05	Arahy. 06	Arahy. 07	Arahy. 08	Arahy. 09	Arahy. 10
Pl-468202	KGBSPSc 30065	Rio Seco	99.57	99.31	99.25	99.45	99.45	99.45	99.39	99.20	99.35	99.53
PI-468201	KGBSPSc 30067	Rio Seco	99.57	99.31	99.25	99.45	99.44	99.45	99.38	99.19	99.37	99.53
S2741	S2741	Rio Seco	99.51	99.17	99.08	99.32	99.34	99.34	99.26	99.08	99.24	99.46
V14167	V14167	Salta city	99.39	99.24	98.90	99.09	99.21	99.12	98.93	98.88	99.27	99.42
ICG8138	?	Rio Arenales, Salta	99.35	99.11	98.68	98.98	99.64	99.05	98.76	98.88	99.18	99.39
PI-468323	KGBSPSc 30077	Chuquisaca, Bolivia	98.89	99.19	98.98	99.19	99.28	99.12	99.01	98.79	99.06	99.19
PI-475845	KGBSPSc 30070	Tarija, Bolivia	98.14	98.15	98.04	98.27	98.29	98.22	98.19	97.91	98.06	98.25

Supplementary Table 9 Exome similarity metrics of A. duranensis accessions to A subgenome of A. hypogaea cv. Tifrunner per chromosome*

Accession	Voucher	Arahy. 01	Arahy. 02	Arahy. 03	Arahy. 04	Arahy. 05	Arahy. 06	Arahy. 07	Arahy. 08	Arahy. 09	Arahy. 10
Pl-468201	KGBSPSc 30065	0.9227	0.8885	0.8867	0.9068	0.9052	0.9070	0.9056	0.9069	0.8954	0.9146
Pl-468202	KGBSPSc 30067	0.9164	0.8899	0.8880	0.9064	0.9061	0.9060	0.9038	0.9057	0.8953	0.9131
Grif-14269	WiSvg 1296	0.9163	0.8992	0.8844	0.8968	0.8971	0.9050	0.9078	0.9042	0.8892	0.9062
Pl-497269	KSSc 38905	0.9139	0.9001	0.8827	0.8955	0.8996	0.9038	0.9045	0.9038	0.8906	0.9070
Pl-468200	KGBSPSc 30064	0.9131	0.8962	0.8739	0.8855	0.8941	0.8839	0.8801	0.8974	0.9003	0.9144
Grif-14265	WiSVg 1272	0.9121	0.8978	0.8736	0.8797	0.8873	0.8824	0.8763	0.8956	0.8998	0.9128
Pl-475886	KSBScC 36006	0.9110	0.9011	0.8746	0.8806	0.9208	0.8827	0.8780	0.8949	0.9019	0.9121
	V14167	0.9110	0.8991	0.8759	0.8834	0.8945	0.8846	0.8797	0.8964	0.9024	0.9101
Pl-497263	ScV 21764	0.9109	0.9015	0.8759	0.8826	0.8929	0.8843	0.8798	0.8969	0.9026	0.9135
PI-468198	KGBSPSc 30061	0.9109	0.8941	0.8695	0.8802	0.8883	0.8802	0.8739	0.8937	0.8988	0.9115
Pl-475882	KSBScC 36002	0.9105	0.8964	0.8793	0.8799	0.9026	0.8877	0.8876	0.8985	0.8928	0.9093
Pl-468197	KGBSPSc 30060	0.9101	0.8937	0.8710	0.8796	0.8883	0.8810	0.8748	0.8941	0.8992	0.9114
Pl-497262	ScV 21763	0.9099	0.8993	0.8736	0.8839	0.8890	0.8835	0.8780	0.8932	0.9015	0.9117
	Se2741	0.9088	0.8918	0.8815	0.8989	0.9025	0.9002	0.8986	0.9006	0.8903	0.9055
Pl-497264	ScV 21766	0.9082	0.8983	0.8722	0.8805	0.8905	0.8812	0.8763	0.8944	0.8994	0.9132
Pl-475884	KSBScC 36004	0.9068	0.8929	0.8708	0.8782	0.8886	0.8826	0.8746	0.8936	0.8963	0.9056
PI-262133	GKP 10038	0.9055	0.8928	0.8678	0.8742	0.9387	0.8756	0.8703	0.8888	0.8953	0.9053
	S2822	0.9049	0.8962	0.8690	0.8821	0.8982	0.8833	0.8737	0.8920	0.8882	0.9054
Pl-475883	KSBScC 36003	0.9038	0.8914	0.8712	0.8712	0.8947	0.8790	0.8786	0.8921	0.8880	0.9039
	S2856	0.9021	0.8987	0.8687	0.8825	0.8927	0.8834	0.8781	0.8942	0.8973	0.9092
Pl-497265	ScV 21767	0.9006	0.8961	0.8693	0.8792	0.8888	0.8807	0.8743	0.8937	0.8978	0.9097
Pl-475844	KGBSPSc 30069	0.8956	0.8909	0.8702	0.8732	0.8974	0.8803	0.8801	0.8923	0.8854	0.9044
Pl-497270	KSSc 38906	0.8935	0.8910	0.8695	0.8687	0.8930	0.8814	0.8729	0.8887	0.8873	0.8982
	S2848	0.8922	0.8845	0.8685	0.8694	0.8931	0.8654	0.8718	0.8834	0.8787	0.8955
Pl-468324	KGBSPSc 30078	0.8906	0.8821	0.8671	0.8738	0.9321	0.8744	0.8781	0.8897	0.8950	0.9019
Pl-475847	KGBSPSc 30072	0.8671	0.8813	0.8705	0.8868	0.8983	0.8886	0.8819	0.8945	0.8710	0.8976
	K7988	0.8658	0.8861	0.8598	0.8821	0.8873	0.8738	0.8803	0.8843	0.8715	0.8936
Pl-475846	KGBSPSc 30071	0.8648	0.8807	0.8699	0.8823	0.9007	0.8806	0.8859	0.8967	0.8745	0.9045
Pl-497268	KSSc 38904	0.8646	0.8870	0.8760	0.8783	0.9044	0.8849	0.8845	0.8836	0.8750	0.9011
Pl-497267	KSSc 38903	0.8640	0.8798	0.8649	0.8856	0.8968	0.8855	0.8819	0.8858	0.8738	0.8981
PI-219823	No data	0.8640	0.8868	0.8640	0.8845	0.8940	0.8774	0.8856	0.8851	0.8745	0.8948
PI-497266	KSSc 38900	0.8630	0.8937	0.8675	0.8786	0.8986	0.8827	0.8755	0.8915	0.8842	0.9027
	Se3350	0.8622	0.8768	0.8661	0.8817	0.8933	0.8856	0.8806	0.8869	0.8655	0.8938
Pl-475845	KGBSPSc 30070	0.8534	0.8753	0.8651	0.8837	0.8925	0.8808	0.8782	0.8834	0.8652	0.8974
	Se3146	0.8506	0.8832	0.8616	0.8612	0.8882	0.8658	0.8691	0.8764	0.8622	0.8836
Pl-497484	KSSc 38902	0.8504	0.8827	0.8603	0.8735	0.8874	0.8804	0.8727	0.8825	0.8651	0.8849
Pl-468319	KGBSPSc 30073	0.8493	0.8742	0.8620	0.8814	0.8921	0.8867	0.8733	0.8833	0.8619	0.8875
Pl-468203	GKBSPSc 30064	0.8491	0.8823	0.8671	0.8811	0.8956	0.8853	0.8731	0.8812	0.8645	0.8872
Grif-15039	WiSVgJsQ 1507	0.8465	0.8638	0.8622	0.8606	0.8715	0.8645	0.8591	0.8760	0.8626	0.8668
Grif-14264	WiSVg 1275	0.8461	0.8631	0.8590	0.8619	0.8702	0.8675	0.8633	0.8724	0.8615	0.8641
	Se3139	0.8458	0.8766	0.8547	0.8789	0.8860	0.8704	0.8652	0.8749	0.8623	0.8748
Pl-475885	KSBScC 36005	0.8450	0.8649	0.8420	0.8375	0.8563	0.8563	0.8521	0.8642	0.8346	0.8426
PI-468323	KGBSPSc 30077	0.8447	0.8856	0.8593	0.8796	0.8968	0.8686	0.8701	0.8785	0.8626	0.8751
PI-468320	KGBSPSc 30074	0.8441	0.8803	0.8600	0.8799	0.8935	0.8813	0.8700	0.8773	0.8589	0.8839
PI-468321	KGBSPSc 30075	0.8426	0.8785	0.8529	0.8666	0.8799	0.8729	0.8690	0.8719	0.8626	0.8730
Pl-497483	KSSc 38901	0.8423	0.8768	0.8538	0.8677	0.8778	0.8726	0.8662	0.8746	0.8637	0.8774
Grif-14263	WiSVg 1274	0.8389	0.8529	0.8554	0.8465	0.8601	0.8570	0.8486	0.8664	0.8536	0.8545
Grif-15036	Pl 666084/WiSVg 1510-B	0.8389	0.8563	0.8565	0.8516	0.8630	0.8590	0.8525	0.8675	0.8575	0.8579
	K30078	0.8372	0.8456	0.8469	0.8432	0.8688	0.8306	0.8414	0.8539	0.8260	0.8497
Grif-15035	WiSVgJsQ 1510-A	0.8353	0.8562	0.8526	0.8453	0.8565	0.8581	0.8493	0.8642	0.8531	0.8583
Grif-15038	WiSVgJsQ1506-W	0.8325	0.8507	0.8502	0.8512	0.8575	0.8517	0.8472	0.8639	0.8514	0.8531
Grif-14261	WiSVg 1268	0.8315	0.8450	0.8509	0.8427	0.8520	0.8494	0.8437	0.8607	0.8490	0.8481
Grif-14262	WiSVg 1270	0.8307	0.8494	0.8518	0.8423	0.8509	0.8500	0.8427	0.8614	0.8486	0.8496
Grif-15037	ノ666085/WiSVgJsQ1506-i	0.8286	0.8475	0.8495	0.8456	0.8544	0.8500	0.8464	0.8629	0.8504	0.8506
	K30077	0.8283	0.8535	0.8422	0.8452	0.8382	0.8539	0.8372	0.8587	0.8319	0.8281

[^1]
Supplementary Table 10

Tetraploid / diploid chromosomal pseudomolecule sizes and ratios for whole chromosomes and and segments inverted relative

Chroms.	Aradu	A subgenome	Tet/Dip
01	107035537	112420854	1.05
02	93869048	102981163	1.1
03	135057546	143813506	1.06
04	123556382	128801742	1.04
05	110037037	115930344	1.05
06	112752717	115504342	1.02
07	79126724	81119488	1.03
08	49462234	51897010	1.05
09	120672674	120519698	1.00
10	109463236	117088237	1.07

Choms.	Araip	B subgenome	Tet/Dip
$01 / 11$	137414913	149299306	1.09
$02 / 12$	108997779	120579088	1.11
$03 / 13$	136109863	146725006	1.08
$04 / 14$	133615181	143237272	1.07
$05 / 15$	149900536	160879708	1.07
$06 / 16$	137147148	154808347	1.13
$07 / 17$	126351151	134922436	1.07
$08 / 18$	129606920	135150084	1.04
$09 / 19$	147089397	158625764	1.08
$10 / 20$	136175642	143980330	1.06

"New"* inverted chromosome segments
"New" inverted chromosome segments

	Aradu	A sub genome	Tet/Dip
05	32093060	28515710	0.89
07	8496956	8930392	1.05

	Araip	B sub genome	Tet/Dip
01	9862242	10619870	1.08

Almost all chromosomal pseudomolecules in the tetraploid assembly are slightly larger than the corresponding chromosomal pseudomolecules in the diploids. Only the inversion on Arahy. 05 is significantly smaller. *Evidence from genetic mapping supports the inversion in Arahy. 07 being present in the diploid ancestor.

Supplementary Table 11
 Collection localities and overall exome similarity metrics of A. duranensis
 accessions (and control species) to A subgenome of A. hypogaea cv . Tifrunner

Notes:

1) Germplasm accessions with "PI" or "Grif" denominations are generally available from the USDA Germplasm Resources Information Network (https://www.ars-grin.gov)
2) The top ranked two accessions KGBSPSc 30067 and KGBSPSc 30065 were both collected during an expedition in 1977 between $15^{\text {th }}$ March and $19^{\text {th }}$ May by A. Krapovickas, W.C. Gregory, D.J. Banks, J.R. Pietrarelli, A. Schinini \& C.E. Simpson. Remarkably, this was the same expedition where A. ipaensis KGBSPSc 30076, the probable present day representative of the B subgenome donor of Arachis hypogaea (Bertioli et al 2016), was collected (Krapovickas et al 2007; "KGBSPSc" is mostly referred to in the abbreviated form "K"). We are greatly indebted to these collectors with their ingenuity and adventurous spirits, the funding agencies and Institutions that supported them, and the regulatory environment that allowed the collection and distribution of these collections to seed banks world-wide. (Sadly, since these collections, regulations following from the Convention on Biological Diversity, implemented in 1993, the Nagoya Protocol and the Andean Pact have seriously undercut the ability to collect and share germplasm.)

Supplementary Table 12

Genomic libraries included in the Arachis hypogaea genome assembly and their respective assembled sequence coverage levels in the final release.
PACBIO reads were used for the assembly, Illumina reads for polishing homozygous
SNPs and indels, HiC was used for scaffolding
*Average read length of PACBIO reads

Library	Sequencing Platform	Average Insert Size	Read Size (bp)	Read Number	Assembled Sequence Coverage (x)
	PACBIO		$\mathbf{9 , 7 8 4}$	$\mathbf{1 7 , 7 4 7 , 7 4 8}$	$\mathbf{7 6 . 7 4}$
ICIH	Illumina-Frag	800	2×250	$294,724,162$	29.59
ICID	Illumina-Frag	800	2×250	$333,638,898$	33.50
Aragment Total				$\mathbf{6 2 8 , 3 6 3 , 0 6 0}$	$\mathbf{6 3 . 0 9}$
AAAA	Illumina-HiC		2×85	$33,208,834$	1.13
AAAB	Illumina-HiC		2×85	$28,934,386$	0.99
AAAC	Illumina-HiC		2×85	$30,030,102$	1.03
AAAD	Illumina-HiC		2×85	$26,565,192$	0.91
AAAE	Illumina-HiC		2×150	$211,752,480$	12.75
AAAF	Illumina-HiC		2×150	$12,366,688$	0.74
AAAG	Illumina-HiC		2×150	$415,779,674$	25.04
AAAH	Illumina-HiC		2×150	$21,117,210$	1.27
Hi-C Total			$\mathbf{7 7 9 , 7 5 4 , 5 6 6}$	$\mathbf{4 3 . 8 6}$	

Supplementary Table 13

PACBIO library statistics for single pass yield of the 51 chips included in the Arachis hypogaea genome assembly and their respective assembled sequence coverage levels

Cutoff	Number of Reads	Basepairs	Average Read Length	Coverage
0	$17,747,784$	$207,196,434,170$	9,784	$76.74 x$
1000	$16,984,792$	$206,776,022,418$	10,262	$76.58 x$
2000	$16,068,940$	$205,392,960,654$	10,854	$76.07 x$
3000	$15,083,004$	$202,928,022,234$	11,523	$75.16 x$
4000	$14,105,835$	$199,510,501,164$	12,217	$73.89 x$
5000	$13,153,838$	$195,229,606,670$	12,928	$72.31 x$
6000	$12,219,149$	$190,089,983,704$	13,657	$70.40 x$
7000	$11,296,495$	$184,094,072,448$	14,407	$68.18 x$
8000	$10,394,841$	$177,334,261,665$	15,169	$65.68 x$
9000	$9,524,492$	$169,939,908,810$	15,950	$62.94 x$
10000	$8,699,996$	$162,111,554,928$	16,738	$60.04 x$
11000	$7,925,503$	$153,984,133,737$	17,525	$57.03 x$
12000	$7,203,695$	$145,687,893,797$	18,309	$53.96 x$
13000	$6,530,054$	$137,271,980,668$	19,096	$50.84 x$
14000	$5,896,752$	$128,725,684,685$	19,896	$47.68 x$
15000	$5,295,774$	$120,014,218,754$	20,716	$44.45 x$
16000	$4,735,569$	$111,335,189,066$	21,553	$41.24 x$
17000	$4,219,000$	$102,815,474,357$	22,401	$38.08 x$
18000	$3,741,661$	$94,465,942,929$	23,266	$34.99 x$
19000	$25,272,751$	$808,466,536,231$	24,147	$32.00 x$

Supplementary Table 14

Summary statistics of the raw output of the MECAT whole genome shotgun assembly. The table shows total contigs and total assembled basepairs for each set of scaffolds greater than the size listed in the left hand column

Minimum Scaffold Length	Number of	Number of	Scaffolds	Contigs	
5 Mb	23	23	$150,942,560$	$150,942,560$	100.00%
2.5 Mb	97	97	$404,936,510$	$404,936,510$	100.00%
1 Mb	501	502	$1,001,909,947$	$1,001,909,795$	100.00%
500 Kb	1,247	1,249	$1,512,793,957$	$1,512,793,073$	100.00%
250 Kb	2,591	2,595	$1,988,505,988$	$1,988,499,990$	100.00%
100 Kb	4,778	4,783	$2,349,231,029$	$2,349,223,361$	100.00%
50 Kb	6,252	6,258	$2,456,140,461$	$2,456,132,755$	100.00%
25 Kb	7,303	7,309	$2,495,638,348$	$2,495,630,642$	100.00%
10 Kb	7,662	7,668	$2,502,304,643$	$2,502,296,937$	100.00%
5 Kb	7,692	7,698	$2,502,553,973$	$2,502,546,267$	100.00%
2.5 Kb	7,692	7,698	$2,502,553,973$	$2,502,546,267$	100.00%
1 Kb	7,692	7,698	$2,502,553,973$	$2,502,546,267$	100.00%
0 bp	7,692	7,698	$2,502,553,973$	$2,502,546,267$	100.00%

Supplementary Table 15
Summary of the tetrasomic regions identified
and duplicated in the final release assembly

Homeologous pair $\mathbf{0 1 / 1 1}$	Size of Region N/A	Duplicated From	Added to
$\mathbf{0 2 / 1 2}$	$2,322,927$	bottom of Arahy. 12	bottom of Arahy. 02
$\mathbf{0 3 / 1 3}$	342,613	bottom of Arahy. 03	bottom of Arahy.13
$\mathbf{0 4 / 1 4}$	$2,767,012$	bottom of Arahy.14	bottom of Arahy.04
$\mathbf{0 5 / 1 5}$	$6,264,747$	top of Arahy.05	top of Arahy.15
$\mathbf{0 6 / 1 6}$	$2,501,280$	bottom of Arahy.06	bottom of Arahy.16
$\mathbf{0 7 / 1 8}$	579,447	bottom of Arahy.07	top of Arahy. 18
$\mathbf{0 9 / 1 9}$	193,833	top of Arahy.09	top of Arahy. 19
$\mathbf{1 0 / 2 0}$	N/A		

Supplementary Table 16
 Summary of sequences used for transcript assembly

	Tifrunner	Florida-07	Gregory	NC 3033	C76-16	A72	Reference	\# Cleaned reads
Vegetative and reproductive development	X						Clevenger et al. 2016. Front. Plant Sci.	$1.3 \mathrm{E}+09$
Preharvest aflatoxin	X	X		X	X	X	Clevenger et al. 2016. Toxins	$6.9 \mathrm{E}+08$
Postharvest aflatoxin		X					Korani et al. 2018. Genetics	$8.6 \mathrm{E}+08$
Nematode			X				Clevenger et al. 2017. Sci. Rep.	$6.5 \mathrm{E}+07$
Late leaf spot ($0,2,4,5,8,20 \mathrm{~d}$ post-inoculation)		X					unpublished	$2.9 \mathrm{E}+08$
Nodulation ($0,6,10,15,21 \mathrm{~d}$ post-inoculation)	x						unpublished	$7.7 \mathrm{E}+08$
Seed and pericarp development (R3,R4-5,R6,R7 stages)				X			unpublished	$1.9 \mathrm{E}+09$
								TOTAL 5.9E+09

Supplementary Figures for

The genome sequence of segmental allotetraploid peanut Arachis hypogaea

Overview legend for Supplementary Figures 1-12

Figures show a dot plot for each homeologous pair of chromosomes from the A and B subgenomes of Arachis hypogaea cv. Tifrunner. Colored bars along the axes indicate the genome compositions. Bars are colored with dots indicating assignable ancestral single nucleotide polymorphisms (SNPs), red for ancestral B genome and blue for ancestral A genome.

Supplementary Figure 1

Comparison and genome compositions of Arahy. 01 vs. Arahy. 11

Supplementary Figure 2
Comparison and genome compositions of Arahy. 02 vs. Arahy. 12

Supplementary Figure 3

Comparison and genome compositions of Arahy. 03 vs. Arahy. 13

Supplementary Figure 4
Comparison and genome compositions of Arahy. 04 vs. Arahy. 14

Supplementary Figure 5
Comparison and genome compositions of Arahy. 05 vs. Arahy. 15

Supplementary Figure 6
Comparison and genome compositions of Arahy. 06 vs. Arahy. 16

Supplementary Figure 7

Comparison and genome compositions of Arahy. 07 vs. Arahy. 17

Supplementary Figure 8
Comparison and genome compositions of Arahy. 08 vs. Arahy. 17

Supplementary Figure 9

Comparison and genome compositions of Arahy. 07 vs. Arahy. 18

Supplementary Figure 10
Comparison and genome compositions of Arahy. 08 vs. Arahy. 18

Supplementary Figure 11

Comparison and genome compositions of Arahy. 09 vs. Arahy. 19

Supplementary Figure 12
Comparison and genome compositions of Arahy. 10 vs. Arahy. 20

Arahy. 20

Supplemental Figure 13

Heatmap of gene density along the 20 Arachis hypogaea cv. Tifrunner chromosomal pseudomolecules.
The gradient color corresponds to the number of genes within 1 Mb windows

Supplemental Figure 14

Heatmap of TE density along the 20 Arachis hypogaea cv. Tifrunner chromosomal pseudomolecules.
The gradient color corresponds to the percentage coverage of TEs within 200 kbp windows
TE density

Supplementary Figure 15

 inheritance of chloroplast plasmid
chloroplast plasmid
other extrachromosomal circular DNAs

Supplementary Figure 16

Methylation in and near genes

Metaplots showing methylation for $\sim 15,000$ genes with annotated 5^{\prime} and 3^{\prime} untranslated regions (UTRs) and flanking regions at CG (pink), CHG (green) and CHH (yellow) sites (where H is a non G base). Scale on x -axis is in bp. Genes show typical patterns of methylation observed in other species: $\mathrm{mCG}, \mathrm{mCHG}$, and mCHH methylation levels are higher upstream and downstream of gene bodies. mCG methylation decreases considerably around transcription start sites (TSS), increases across the gene-bodies, and decreases at transcription termination sites (TES), whereas mCHG and mCHH are low across entire gene-bodies

Supplementary Figure 17

Methylation percentage in chromosomal pseudomolecules of A. hypogaea at CG (in fuchsia), CHG (in green) and CHH (in yellow) sites.

Values where calculated in 200 kb windows.

Supplemental Figure 18: Metaplots of gene bodies and flanking regions in A and B-subgenomes comparing (a) methylation percentage (CG, CHG and CHH) and (b) siRNAs count (21,22 and 24 nt). A homeologs (blue), B homeologs (red). TSS : transcriptional start site, TES : transcriptional end site. the p -values for significance of difference correspond to Wilcoxon rank-sum statistical test. ns: not significant, * $: ~ P \leq 0.05,{ }^{* *}: P \leq 0.01,{ }^{* * *} \mathrm{P}: \leq 0.001,{ }^{* * * *}: \mathrm{P} \leq 0.0001$.

Supplemental Figure 19: densities of DNA sequences corresponding to sRNAs

 in chromosomal pseudomolecules of \boldsymbol{A}. hypogaea cv. Tifrunner$21 n t$ (in red), $22 n t$ (in green) and $24 n t$ (in blue) length.
Values where calculated in 200 kb windows.

$$
\text { Size }-21 n t-22 n t-24 n t
$$

Supplemental Figure 20: densities of DNA sequences corresponding to uniquely mapping sRNAs in chromosomal pseudomolecules of A. hypogaea cv. Tifrunner.
21 nt (in red), 22 nt (in green) and 24nt (in blue) length. Values where calculated in 200 kb windows.
Size - $21 n t-22 n t-24 n t$

Supplementary Figure 21

Homeolog expression differences in A. hypogaea cv. Tifrunner. Homeologs were compared to check for differences in gene expression levels in different tissues and developmental stages of peanut pods. The number of homeologous genes more
highly expressed ($\log _{2}$ fold change ≥ 1, Benjamini-Hochberg adjusted $P<0.05$; Wald test) in each subgenome is represented. P-value correspond to binomial test with the odds of A genes being more highly expressed at 0.5 probability.

* $: P<0.05$, others : not significant.

Supplementary Figure 22

Classification of homeologous pairs by expression patterns. Differentially expressed pairs ($\mathrm{n}=15,328$) in tissues and developmental stages of pods in A. hypogaea were classified into five categories: i) highly asymmetrically expressed, $\log _{2}$ expression ratios > 3 ; ii) consistently asymmetrically expressed, same expression pattern in at least half of the tissues; iii) moderate difference $\log _{2}$ expression ratios ≥ 1 and <3; iv) no difference; and v) unmappable/not expressed. The inset plot
shows the distribution of highly and consistently asymmetrically expressed pairs in each subgenome.

Supplementary Figure 23

Top 10 Gene Ontology terms (in each of three categories - biological process, cellular component and molecular function) enriched ($P<0.05$, Fisher's exact test) among a) highly asymmetrically expressed and b) consistently asymmetrically expressed homeolog pairs.

Supplementary Figure 24

Schematic tree of relationships of species used in identifying single nucleotide polymorphisms characteristic of ancestral A and B genomes. We consider the topography of relationships extremely strongly supported: by biogeography, cross-compatibilities of species and accessions
(Krapovickas et al 2007; Moretzsohn et al 2009), karyotypes (Robledo et al 2009; Robledo et al 2010)
and molecular phylogenies (Moretzsohn et al 2013).

Tree not to scale.

Supplementary Figure 25

This Figure is a supplement for Fig. 2 in main manuscript. Overview of A / B genome compositions in selected A. hypogaea and A. monticola that show variations in genome structures visible on this scale and using these methods. Unusual variations are highlighted with with colored arrows and brackets. (note how the deviations in structure in the two right hand plots, at the top of A02/B02 (02/12) are in opposite directions)

$\log 2$ of ratio of mapping densities onto orthologous genes A / B

Supplementary Figure 26

Ancestral allele loss in a selection of A. monticola and A. hypogaea

Estimated proportion of ancestral alleles lost by homeologous recombination and deletions, in one A. monticola and 38 A. hypogaea accessions. Genotypes are Tifrunner, NC3303, and the "China landraces and modern cultivars" genotypes (Dataset 2). Each genotype is represented by 20 dots. Illumina whole genome sequences were mapped to the B subgenome of Tifrunner; 825,960 ancestral A and B alleles were inferred from their differentiation of representatives of A and B genome diploid species (Supplementary Fig. 24). The raw counts that generated this graph are in Dataset 5, file Data-AB-SNP-counts-high-coverage.txt.

Arahy Chromosome

The analysis was done using the Tifrunner B subgenome as reference
homeologous A subgenome chromosomes are shown in parenthesis

Supplementary Figure 27

Extrachromosomal circular DNAs detected in diploid and tetraploid Arachis

Depths of coverage of mapped reads from extrachromosomal circular DNA onto the abundant transposable elements detected in the libraries. Genotypes on left. Colors indicate the presence of SNPs, maximum coverage is indicated on the right. Mu4-1 is a DNA MULE transposon, Zuhe is a Ty3gypsy LTR transposon, Yara is a Ty1-copia LTR transposon. No abundant circular DNAs were detected in hybrids or A. hypogaea that were not detected in one or both of the ancestral diploids.
A. duranensis V14167
A. ipaensis K30076
A. ipaensis \times A. duranensis (2n)
A. ipaensis \times A. duranensis (4n) $1^{\text {st }}$ gen
A. ipaensis \times A. duranensis (4n) $9^{\text {th }}$ gen
A. hypogaea cv. Tifrunner
A. hypogaea cv. IAC Runner 886
A. duranensis V14167
A. ipaensis K30076
A. ipaensis \times A. duranensis (2n)
A. ipaensis \times A. duranensis $(4 n) 1^{\text {st }}$ gen
A. ipaensis \times A. duranensis $(4 n) 9^{\text {th }}$ gen
A. hypogaea cv. Tifrunner
A. hypogaea cv. IAC Runner 886
A. duranensis V14167
A. ipaensis K30076
A. ipaensis \times A. duranensis (2n)
A. ipaensis \times A. duranensis (4n) $1^{\text {st }}$ gen
A. ipaensis \times A. duranensis (4n) $9^{\text {th }}$ gen
A. hypogaea cv. Tifrunner
A. hypogaea cv. IAC Runner 886

|".|| ||||||||||| |i|l

 Zuhe

Supplementary Figure 28
 Mobile elements recently inserted near Tifrunner genes

Recently inserted transposons located in or near annotated genes in the Tifrunner genome. Mutator-like elements (MULEs) dominate detected transposon activity near genes.

Supplementary Fig 29
Repeat counts in inverted and non-inverted regions of the tetraploid chromosomes of A. hypogaea cv . Tifrunner

Supplementary Figure 30

Percentage identities (y axes) in 10 kb windows of three different A. duranensis accessions vs. distance along A. hypogaea cv. Tifrunner Arahy. 01 (x axis). Estimated by alignment of Illumina whole genome sequences to Arahy. 01
(a) PI-468202, from Rio Seco, Argentina, one of the two accessions with highest DNA similarity to the A subgenome of A. hypogaea;
(b) V14167 from Salta, Argentina, with a sequenced genome (Bertioli et al 2015);
(c) PI-475845 from Tarija, Bolivia, with a partially assembled genome (Chen et al 2016)

References

Bertioli et al 2016 Nature Genetics, 47, 438.
Chen et al 2016 Proc. NatI. Acad. Sci. U.S.A. 113: 6785-6790.

Supplementary Figure 31

Recorded pedigree of A. hypogaea cv. Tifrunner
Basse, Dixie Giant and PI 203396 are thought to be A. hypogaea subsp. hypogaea var. hypogaea
Spanish 18-38 and Small White Spanish may be A. hypogaea subsp. fastigiata var. vulgaris (but not verified in this work)

Supplementary Figure 32

Contact map visualization produced by the software Juicebox for the 20 chromosomal pseudomolecules of A. hypogaea cv. Tifrunner

Supplementary Figure 33

Dot plot of BAC contig 159899 on a region of Arahy.01. This alignment is representative of the high quality alignments in 79 of the 175 available BAC contigs.

Supplementary Figure 34

Dot plot of BAC contig 97682 on a region of Arahy.10, which is representative of the 86 contigs from repetitive regions of the genome.

Supplementary Figure 35

Dot plot of BAC contig 140600 on a region of Arahy. 17 , which is representative of the 10 that align to an area where the adjacent genome contigs indicate that they overlap.

[^0]: ${ }^{1}$ Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA. ${ }^{2}$ Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA. ${ }^{3}$ Department of Crop and Soil Science, University of Georgia, Athens, GA, USA. ${ }^{4}$ HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA. ${ }^{5}$ The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA. ${ }^{6}$ Instituto de Botánica del Nordeste (CONICETUNNE), Corrientes, Argentina. ${ }^{7}$ FACENA, Universidad Nacional del Nordeste, Corrientes, Argentina. ${ }^{8}$ Department of Plant Pathology, University of Georgia, Tifton, GA, USA. ${ }^{9}$ Interdepartmental Genetics Graduate Program, lowa State University, Ames, IA, USA. ${ }^{10}$ National Center for Genome Resources, Santa Fe, NM, USA. ${ }^{11}$ Center of Excellence in Genomics \& Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India. ${ }^{12}$ Department of Computer Science, lowa State University, Ames, IA, USA. ${ }^{13}$ Department of Horticulture, University of Georgia, Tifton, GA, USA. ${ }^{14}$ UMR5096, Laboratoire Génome et Développement des Plantes, CNRS, Perpignan, France. ${ }^{15}$ UMR5096, Laboratoire Génome et Développement des Plantes, Université de Perpignan, Perpignan, France. ${ }^{16}$ Crop Protection and Management Research Unit, US Department of Agriculture, Agricultural Research Service, Tifton, GA, USA. ${ }^{17}$ Corporate R\&D, LG Chem, Seoul, Republic of Korea. ${ }^{18}$ UMR232, Diversité, Adaptation et Développement des Plantes, IRD, Montpellier, France. ${ }^{19}$ UMR232, Diversité, Adaptation et Développement des Plantes, Université de Montpellier, Montpellier, France. ${ }^{20}$ Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil. ${ }^{21}$ Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan. ${ }^{22}$ National Institute of Plant Genome Research, New Delhi, India. ${ }^{23}$ Corn Insects and Crop Genetics Research Unit, US Department of Agriculture Agricultural Research Service, Ames, IA, USA. ${ }^{24}$ Henan Provincial Key Laboratory for Genetic Improvement of Oil Crops, Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China. ${ }^{25}$ Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture and Rural Affairs, Zhengzhou, China. ${ }^{26}$ Genome Center, University of California, Davis, Davis, CA, USA. ${ }^{27}$ Crop Genetics and Breeding Research Unit, US Department of Agriculture Agricultural Research Service, Tifton, GA, USA. ${ }^{28}$ Genomics and Bioinformatics Research Unit, US Department of Agriculture Agricultural Research Service, Stoneville, MS, USA. ${ }^{29}$ Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA. ${ }^{30}$ These authors contributed equally: David J. Bertioli, Jerry Jenkins, Josh Clevenger. ${ }^{31}$ These authors jointly supervised this work: Steven B. Cannon, Scott A. Jackson, Jeremy Schmutz.
 *e-mail: bertioli@uga.edu; sjackson@uga.edu; jschmutz@hudsonalpha.org

[^1]: ${ }^{*}$ Note exome similarity metrics are not DNA identity. Values have been red-yellow-green heat mapped

